Hybrid Distributed Mobility Management Scheme for Next-Generation Wireless Networks

Giorgos Chochlidakis and Vasilis Friderikos

King’s College London
Strand WC2R 2LS, London, UK

28th of November, 2014
Outline

1 All-IP Mobility Management Schemes
 - Quick Overview
 - Motivation

2 System Model
 - Centralized Mobility Management (CMM)
 - Distributed Mobility Management (DMM)
 - Proposed Hybrid-DMM scheme

3 Numerical Investigations

4 Concluding remarks
Centralized Mobility Support (CMM)

- Centralized entities handle the mobility support
- Host-based solutions (i.e. MIPv4\(^1\), HMIPv6\(^2\))
- Network-based solutions (i.e. PMIPv6\(^3\))

Disadvantages

- Suboptimal routing
- MAs possibly points of congestion → latency
- Reliability (failure of MA → system failure)
- Scalability issues
- No dynamic mobility support

\(^1\)http://www.ietf.org/rfc/rfc5944.txt
\(^2\)http://www.ietf.org/rfc/rfc5380.txt
\(^3\)http://www.ietf.org/rfc/rfc5213.txt
Centralized Mobility Support (CMM)

HMIPv6 overview

Figure 1: HMIPv6 architecture overview
Centralized Mobility Support (CMM)

MIPv6 and PMIPv6 overview

Figure 2: (a) MIPv6 and (b) PMIPv6 architectures overview
Distributed Mobility Management (DMM)\(^1\)

- Mobility function at the edge of core network
- Access routers become mobility anchors
- Flows are forwarded from old to the new AR
- Each new flow gets routed directly to the new AR
- Host or network based
- Fully or partially distributed solutions

\(^1\)http://datatracker.ietf.org/doc/draft-ietf-dmm-best-practices-gap-analysis
Main challenges

- Is the decentralization of the mobility function always better?
- How does the topology of the core affect the performance of the mobility support scheme?
- How do the CMM and the DMM compare in different scenarios?
- Can a solution between those two approaches outperform them?

Targets of this paper:

- Optimal MAs configuration in CMM scenario
- DMM modelling
- Comparison of CMM & DMM
- Proposal of a Hybrid-DMM
- Evaluation of proposal
Centralized Mobility Scheme

Optimization Framework

Assumptions
- Centralized architecture
- L available MAs
- K flows from GW to ARs
- Tree-like topology

Aim
- Minimize the total routing and mobility cost by calculating the optimal:
 - number of MAs
 - location of MAs
 - selection of MAs by ARs

Inputs
- Graph $G = (V, E)$
- Flows k and demands d
- Set of available paths p_{km}
- Graph $G = (V, E)$
- Mobility matrices $H_{K \times J}$ and $W_{K \times J \times J}$, where J is the number of ARs
Centralized Mobility Management (CMM)

Optimization Framework

The total routing cost \(\Xi \) can be written as follows:

\[
\Xi = \sum_{k \in K} \sum_{m \in J} d_k p_{km} x_{km}
\] (1)

And the total mobility cost \(\Psi \) can be written as:

\[
\Psi = \sum_{k \in K} \sum_{m \in J} \sum_{j \in T} \left\{ h_{kj} \left(d_k x_{jm} p_{jm} + Z_{kj} (x_{jm} - G_{kjm}) \right) \right. \\
+ \left. \sum_{l \in T} w_{kjl} \left(d_k x_{lm} p_{lm} + Z_{jl} (x_{lm} - G_{jlm}) \right) \right\}
\] (2)

The aim is to minimize the total cost \(T = \Xi + \Psi \)
Distributed Mobility Management (DMM)

System Model

- Fully distributed approach
- Network-based solution
- Every AR is a MA
- Flows start from a single source node and are destined to the ARs
Hybrid-DMM
Architectural overview

Figure 4: (a) CMM, (b) DMM, and (c) Hybrid-DMM scheme
Hybrid-DMM
Proposed Mobility Management Scheme

Algorithm 1 Hybrid-DMM

1: for \(k = 1 \) to \(K \) do
2: \hspace{1em} Calculate the cost of every flow using DMM scheme
3: \hspace{1em} if \(T \geq \gamma \) then
4: \hspace{2em} Index flow \(k \) in a group \(A \)
5: \hspace{1em} end if
6: end for
7: Solve the proposed Integer Programming Algorithm \(\forall k \in A \)
8: Anchor those flows to the optimal MAs from step 7
9: Support the rest of the flows to the edge routers using DMM
Numerical Results
CMM-DMM Comparison

Figure 5: Total cost for different topologies for CMM and DMM scheme

Figure 6: Total cost for different end-user mobility case for CMM and DMM scheme
Numerical Results

DMM performance (per access router analysis)

Figure 7: Total cost for each AR domain in DMM scheme (the set threshold γ has been set at 87%)

- 511 total nodes in network
- 256 access routers
- Specific flows have 30% more than the network average cost
- These domains affect delay sensitive flows
- Supporting them with hierarchically higher located MAs can be more efficient
Numerical Results
Performance of the proposed scheme

- Handling of the aforementioned areas by H-DMM improves the cost
- This solves the problem of topology dependence
- Achieved gain for the supported flows ranges from 15% to 20%

Figure 8: Total cost of flows supported by DMM and Hybrid-DMM

Concluding remarks

Conclusions

- The network topology can affect the performance of the mobility management scheme

- Although DMM performs in general better than CMM there are areas where distribution is not the solution

- Handling specific AR domains with MAs located higher across the network is more efficient

- Very good performance of the proposed H-DMM, concerning the supported flows (the gain ranges from 15% to 20%)

✓ The work is now moving to take into account optimized mobility in virtualized mobile networks
Acknowledgements

This work has received funding from the European Unions Seventh Programme for research, technological development and demonstration under grant agreement No 317126, as a part of the Marie Curie Initial Training Networks (ITN) CROSSFIRE\(^1\) project.

\(^1\)http://mitn-crossfire.eu/
Thank you for your time

Giorgos Chochlidakis†
Marie Curie Early Stage Researcher
Department of Informatics
Centre for Telecommunications Research
School of Natural and Mathematical Sciences
King’s College London (KCL)
Strand WC2R 2LS, London, UK

†giorgos.chochlidakis@kcl.ac.uk